ELI-17 Project


Project title: Electromagnetic Shielding Structures to assure Biological Safety during target hitting experiments on PW Laser Facilities
Periode: 01 Sept 2016 - 31 Aug 2019

Contact Person:
Project Director: Dr. Aurelian MARCU (INFLPR)

Coordinator:
National Institute for Laser, Plasma and Radiation Physics - INFLPR
Atomistilor 409, Magurele, Romania

Partner institution:
National Institute of Physics and Nuclear Engineering "Horia Hulubei" - IFIN-HH
Reactorului 30 , Magurele, Romania


Project Summary:

High intensity electromagnetic(EM) field shielding structures will be studied with respect to their ability to ensure biological safety during the PettaWatt power laser facilities experiments.  Special emphasis will be centered on how various material shielding structures perform in protecting circulating blood B lymphocytes from the yet unknown effects of the high EM fields generated by the afore mentioned lasers. In vitro studies show the oncogenic effects on lymphoid cell line produced by such high intensity EM fields coming from other described sources .Remarkably, EM fields generate DNA double stranded breaks leading to chromosomal translocations which mimic the severe genetic abnormalities present in white blood cell cancers namely, lymphomas or leukemias[2]. When a high intensity laser with an ultra-short pulse irradiates a target, the generated plasma is accompanied by the emission of an intense electromagnetic field inside as well as outside the laser target interaction chamber.  Conventional lasers Giant Electromagnetic Pulse (GEMP) emissions on metallic targets for pulses shorter than 300 ps, (shorter than the characteristic target discharging time) can generate powers up to 4x1016/cm2 with measured electric fields up to 7 kV/m . 

For the CETAL PW facility, where the preliminary experiments will be performed, the expected power density will reach 1018 – 1021 W/cm2 (pulse duration 25 fs and pulse energy up to 30 J with spot diameter sizes on the order of mm) hence, one could expect under such parameters the emission of much stronger electromagnetic waves. Metallic sheets are known to give the best protection against EM radiation. Their shielding is more efficient against higher frequencies EM waves and their protection increases with their thickness. Metallic meshes are also efficient in shielding radiations up to specific wavelengths. We will test the shielding protection provided by various types of metallic sheets, the effect of the eye size and geometric shape of diverse single and multi-layered metallic sheet(s) meshes. The shielding efficiency of these materials will first be simulated by in silico methods to obtain the designs with optimal geometries and structural characteristics for shielding. 

The intensity of laser-target smashing generated fields will be measured with antennas at various levels of beam proximity in the absence or presence of each individual type of shielding. In the next stage a kit containing an acclimatization chamber appropriate for B cell growth under given conditions will be manufactured and shielded with the various materials and shield designs produced. With this kit we will expose various types of living B cell lines to the influence of the PettaWatt lasers target hitting experiments in the presence or absence of the designed material shielding. A whole panoply of genetic molecular biology assays will be applied to these irradiated cells testing for EM induced DNA double stranded breaks, and more specifically for myc/IgK-l translocation, a hallmark of many non-Hodgkin B cell lymphomas. The magnitude of genetic abnormalities will be scored using the indicators of these assays which will be correlated with the detected field amplitudes and the presence or absence of appropriate shielding. Thus we will assess the efficacy of each material/design used for shielding to protect against such oncogenic EM caused cellular lesions.


Titlul proiectuluiStructuri de ecranare electromagnetica pentru siguranta biologica in cursul desfasurarii experimentelor interactie laser tinta in unitatile laser PW
Perioada: 01 Sept 2016 - 31 Aug 2019

Persoana de contact:
Director Proiect Dr. Aurelian MARCU (INFLPR)

Coordonator:
Institutul National pentru Fizica Laserilor, Plasmei si Radiatiei - INFLPR
Atomistilor 409, Magurele, ROMANIA

Institutie partenera:
Institutul National de Cercetare-Dezvoltare pentru Fizica si Inginerie Nucleara Horia Hulubei - IFIN-HH
Reactorului 30 , Magurele , ROMANIA


Rezumatul proiectului

In scopul protejarii biologice propunem sa dezvoltam si sa testam materiale si structuri noi cu rol de ecranare a campurilor intense electromagnetice (EM) dezvoltate in cursul experimentelor din unitatile laser de putere PettaWatt. Specific, studiul va adresa efectul de ecranare testat si menit protejarii limfocitelor B circulante expuse in vecinatatea campurilor. Studii in vitro demonstreaza efectul oncogenic produs de campurile EM intense generate surse  de alta origine asupra liniilor celulare limfoide .Efectul teratogen al campurilor EM produce in aceste celule fragmentari dublu catenare la nivelul ADN-ului, leziuni ce duc la translocatii cromozomiale. Acestea sunt defecte genetice severe care in linia celulelor albe circulante conduc la cancere precum, limfoamele si leucemiile . Cand un laser de intensitate mare iradiaza o tinta cu pulsuri ultra-scurte, plasma generata este insotita de emisia unui camp intens EM atat la interiorul cat si la exteriorul camerei de interactie. Emisiile de tip "Giant Electromagnetic Pulse (GEMP)" de la laserele conventionale, cand interactioneaza cu tinte metalice cu pulsuri mai scurte de 300ps, (mai reduse decat timpul de descarcare al tintei) pot genera campuri de puteri pana la 4x1016 W/cm2 si unde masurate pe contururi la 7 kV/m . 

In unitatile cu lasere de tip PW precum cel de la CETAL, unde se vor desfasura experimentele preliminare, densitatea campurilor dezvoltata poate atinge 1018 – 1021 W/cm2 (pulsuri de durata 25 fs cu energii de pana la 30 J pe fascicole cu diametre de ordinul mm).  In astfel de conditii ne asteptam la emisia de unde EM mult mai intense decat cele mentionate anterior. Este stiut faptul ca foliile metalice asigura protectia optima impotriva radiatiilor EM, atenuarea lor fiind cu atat mai buna cu cat grosimea foliilor creste, iar eficienta lor de ecranare fiind buna chiar si la game de frecvente inalte. Si plasele metalice sant bune la ecranare dar eficienta lor scade la frecventele mari. Vom testa protectia prin ecranare a diverselor tipuri de folii metalice(materialul) precum si efectul produs de marimea, geometria ochiurilor plaselor, ambelor atat in strat unic cat si multiplu(structura). Eficienta lor va fi mai intai simulata prin metode in silico pentru a obtine design-urile cu geometrie si structura optima ecranarii. 

Intensitatea campurilor generate in cursul experimentelor de ciocnire laser-tinta va fi masurata cu antene speciale la diferite distante de fascicul, in absenta sau prezenta ecranelor. Ulterior, vom construi un kit, o camera de aclimatizare destinata cresterii limfocitelor B ce poate fi ecranata cu materialele/structurile menite testarii. Cu ea vom expune diferite linii celulare B vii in zonele de influenta masurata, din preajma experimentelor de interactie fascicul laser de tip PW-tinta, fie iradierii libere sau controlat ecranate. Dupa iradiere celulele vor fi analizate printr-un sir de teste genetice de biologie moleculara pentru detectarea leziunilor de fragmentare dublu catenara a ADN-ului, si mai specific pentru detectia translocatiilor  myc/IgK-l trasatura definitorie a multor limfoame B non-hodgkiniene. Amplitudinea acestor abnormalitati genetice induse +/- ecranare va fi gradata cantitativ folosind o scara de indicatori ai acestor teste corelata direct cu severitatea leziunii. Astfel vom determina eficienta fiecarui material/design inovat la ecranare precum si gradul fiecaruia de a asigura protectia impotriva leziunilor oncogenice celulare produse de campurile intense EM.



Results:

Conference presentations :
[1] A.Marcu, A.Groza, M.Ganciu, B.Mihalcea, A. Achim, R. Ungureanu, G. Cojocaru, M.Serbanescu, C. Diplasu, G. Giulbega, Electromagnetic Waves Generation in Femptosecond Laser Interaction with Metalls, EMRS 2017,22-26 May 2017, Strasbourg, France
[2] A.Marcu, A.Groza, M.Ganciu, B.Mihalcea, A. Achim, R. Ungureanu, G. Cojocaru, M.Serbanescu, C. Diplasu, G. Giulbega, Electromagnetic Waves Generation in Femptosecond Laser Irradiation of Metalls, International conference on Laser Precision Microfabrication - LPM2017, 5-8 June 2017, Toyama, Japan
[3] A.Marcu, A. Achim, M.Serbanescu, A.Groza, M.Ganciu, B.Mihalcea, R. Ungureanu, G. Cojocaru, C. Diplasu, G. Giulbega, Femtosecond Laser Interaction with Metalls and Electromagnetic Waves Generation, TIM 17, 25-27 May 2017, Timisoara, Romania.
[4] A.Marcu*, L.Ionel, A.Groza, M.Ganciu, B.Mihalcea, A. Achim, R.Ungureanu, G. Cojocaru, M.Serbanescu, C. Diplasu, G. Giulbega, Electromagnetic Waves Generation by Femtosecond Laser Irradiation of Thin Metallic Films, Plasma Physics by Laser Applications (PPLA), Messina, Italy, July 5-7 2017
[5] A.Marcu, C. Diplasu, L.Ionel, G. Giulbega, A.Groza, M.Ganciu, B.Mihalcea, A. Achim, R. Ungureanu, G. Cojocaru, M.Serbanescu, Electromagnetic Waves Generation by High-Power Laser Interactions with Thin Metallic Films , APSAC 2017, Dubrovnik, Croatia, September 27-29 2017
[6] A.Groza, B.Butoi, P.Dinca, B.Mihalcea, E.Stancu, M.Serbanescu, A.Marcu, M.Ganciu, Simulation of proton and electron energy distribution spectra as preparatory phase for high power lasers - solid target interaction experiments, APSAC 2017, Dubrovnik, Croatia, September 27-29 2017
[7] Elena Ionita, Aurelian Marcu, Mihai Serbanescu, Razvan Ungureanu, Gabriel Cojocaru, Georgiana Giulbega, Constantin Diplasu, Alexandru Achim, Bogdan Mihalcea, Andreea Groza and Mihai Ciubotaru, The effect of high intensity pulsed electromagnetic fields on V(D)J gene recombination of developing pre B lymphocytes, APSAC 2017, Dubrovnik, Croatia, September 27-29 2017
[8] G. Giubega, C. Diplasu, R. Ungureanu, G. Cojocaru, A. Marcu, M.Serbanescu, A. Achim, Simulation of various detection stack configurations for high-power laser-plasma accelerated electrons APSAC 2017, Dubrovnik, Croatia, September 27-29 2017
[9] Mihail-Gabriel Barbut, Aurelian Marcu, Niculae-Tiberiu Puscas, Emil Ioan Slusanschi, Automated beam transport alignment platform for petawatt laser systems, APSAC 2017, Dubrovnik, Croatia, September 27- 29 2017
[10] G. Giubega, , R. Ungureanu, G. Cojocaru, A. Marcu, M. Serbanescu, A.Achim, C. Diplasu, Simulation of permanent magnet spectrometer for electrons accelerated in high power laser produced plasma at CETAL-PW, APSAC 2017, Dubrovnik, Croatia, September 27-29 2017
[11] A.Marcu, B.Mihalcea, A.Groza, R. Ungureanu, A. Achim, SAR Measurements of Organic Materials for Laser-Matter Relevant Frequencies, APSAC 2017, Dubrovnik, Croatia, September 27-29 2017