CETAL | Brancusi Project (PN-III-P3-3.1-PM-RO-FR-2019-0216)| 9BM

 

9BM Brancusi Project


English (Engleză)
Project title: Conventional and unconventional methods of synthesis and characterization of carbon materials doped with metal nanoparticles
Periode: June 2019 - December 2020

Coordinator:
Project Director: Dr. Emanuel AXENTE (INFLPR)
National Institute for Laser, Plasma and Radiation Physics - I.N.F.L.P.R.
Atomiștilor 409, Măgurele, Romania

Partner Coordinator:
Project Director: Dr. Jean-Marc le MEINS (IS2M)
Materials Science Institute Mulhouse
15 Jean Starcky St., Mulhouse, 68057, France

Abstract:
In this project, new chemical synthesis methods, derived from the conventional methods, but also unconventional laser technologies will be developed in order to obtain multifunctional composite materials based on metallic nanoparticles doped Carbon for biomedicine (biocompatibility and microfluidics) and energy storage applications (supercapacitors). Distinct characteristics like the short time for materials processing, the non-invasive and non- toxic behavior of the precursors, solvents and chemical products resulted from the chemical reactions and moreover the precise control of the physico-chemical properties recommend these methods as potential tools for obtaining high performing materials for industrial applications. The complementary expertise of the two teams PhIL and CMH involved in the project, but also the existing infrastructures, allows a complete investigation from the physico-bio- chemical point of view (structure, morphology, surface chemistry, textural properties, thermal stability and in-vitro behavior) of all synthesized materials.

Objective:
The main goal of the project consists in the development of fast, non-toxic and non-invasive synthesis methods, in order to obtain multifunctional materials based on carbon nanostructures doped with metallic nanoparticles which can be successfully used for both biomedicine and energy storage applications.

Research Team:
INFLPR
• Dr. Emanuel AXENTE
• Dr. Felix SIMA
• Dr. Cristina PANA (NITA)
• Dr. Florin JIPA
• Dr. Mihai SOPRONYI
• Dr. Cristian BUTNARU

IS2M
• Dr. Jean-Marc le MEINS
• Dr. Camelia Matei GHIMBEU
• Dr. Benedicte RETY
• Drd. Adrian BEDA
 
 


Română (Romanian)
Titlul proiectului: Metode convenționale si neconvenționale de sinteza si caracterizare de materiale carbonice dopate cu nanoparticule metalice
Perioada: Iunie 2019 - Decembrie 2020

Coordonator:
Director Proiect: Dr. Emanuel AXENTE (INFLPR)
Institutul Național pentru Fizica Laserilor, Plasmei și Radiației - I.N.F.L.P.R.
Atomiștilor 409, Măgurele, ROMÂNIA

Coordonator Partener:
Director Proiect: Dr. Jean-Marc le MEINS (IS2M)
Institutul de Stiinta Materialelor Mulhouse
15 Jean Starcky St., Mulhouse, 68057, France

Abstract:
În acest proiect vor fi dezvoltate noi metode de sinteză chimică, derivate din metodele convenționale, dar și tehnologii neconvenționale cu laser, pentru dezvoltarea unor materiale compozite multifuncționale pe bază de carbon dopate cu nanoparticule metalice ce pot fi utilizate cu succes atât pentru aplicații în biomedicină (incluzând biocompatibilitate și microfluidică), cât și pentru stocarea de energie (supercondensatori). Caracteristici specifice precum timpul scurt de obținere a materialelor, caracterul neinvaziv și netoxic al precursorilor, solvenților și al produșilor reacțiilor chimice implicate, dar și controlul precis asupra proprietătilor fizico-chimice recomanda aceste metode ca potențiale căi de obținere de materiale performanțe la nivel industrial. Complementaritatea expertizelor celor două echipe PhIL și CMH implicate în proiect, dar și a infrastructurilor deținute de cele două institute INFLPR și IS2M, permit o investigare completă din punct de vedere fizico-bio-chimic (structură, morfologie, chimia suprafeței, proprietăți texturale, stabilitate termică și comportament in-vitro) a materialelor sintetizate.

Obiectiv:
Scopul principal al proiectului este de a dezvolta metode de sinteză rapide, netoxice și neinvazive pentru om și mediul înconjurător, în vederea obținerii de materiale multi-funcționale pe bază de nanostructuri de carbon dopate cu nanoparticule metalice ce pot fi folosite cu succes atât pentru aplicații în biomedicină (și microfluidica), cât și pentru stocarea de energie (supercondensatori).

Echipa de cercetare:
INFLPR
• Dr. Emanuel AXENTE
• Dr. Felix SIMA
• Dr. Cristina PANA (NITA)
• Dr. Florin JIPA
• Dr. Mihai SOPRONYI
• Dr. Cristian BUTNARU

IS2M
• Dr. Jean-Marc le MEINS
• Dr. Camelia Matei GHIMBEU
• Dr. Benedicte RETY
• Drd. Adrian BEDA

RESULTS

Summary:
We report on a new laser-assisted method for the synthesis of composite coatings consisting of cobalt oxide-embedded porous carbon with gradient of composition and sizes. Uniform carbon thin films containing cobalt oxide nanoparticles (CoO NPs) of various concentrations and sizes are obtained by Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE) followed by a post-annealing treatment. Specifically, simultaneous pulsed laser irradiation of two concentric cryogenic targets was applied for gradient thin films assembling on solid substrates. Both targets contained environmentally friendly phloroglucinol/glyoxylic acid organic precursors and a template dissolved in an ethanol-chloroform mixture, whereas one of them enclosed, in addition, cobalt nitrate salt. Due to angular dispersion and crossing of the two vapor plumes during co-deposition process, thin composite polymeric nanocoatings containing Co nitrate salt were obtained. After subsequent thermal annealing treatment of samples at 600 ºC, mesoporous carbon films exhibiting CoO NPs gradient distribution were then directly obtained onto the substrates. Carbon matrix formation was supported by EDX analyses and characteristic D, G and 2D bands present in the Raman spectra. Co NPs concentration varied from 3 to 32 wt% on the substrates with a minimum at furthest interaction point of the Co salt containing plume and substrate, while carbon concentration significantly decreased from 91 to 63 wt%. Oxygen amount was relatively constant at about 6 wt% for all coatings. The CoO NPs are homogenously dispersed in the carbon matrix whereas a tendency for aggregation is observed for high loadings. In addition, the CoO NPs size gradient distribution ranged from 3 to 8 nm with the minimum size correlating the minimum concentration.
 
9BM

Publications:
[1] M. Sopronyi, C. Nita, J.-M. Le Meins, L. Vidal, Fl. Jipa, E. Axente, C. Matei Ghimbeu, F. Sima, „Laser-assisted synthesis of carbon coatings with cobalt oxide nanoparticles embedded in gradient of composition and sizes”, Surface and Coatings Technology (2021), 127301 *IF(2020) = 4.158 (ranked Q1).

Conference presentations:
[1] Cristina Pană (Niţă), “Hard carbon derived from waste biomass for Na-ion batteries”, 23rd International Conference, “New Cryogenic and Isotope Technologies for Energy and Environment", October 26-29, 2021, Romania, EnergEn2021 – Online.