CETAL | PED Projects (PN-III-P2-2.1-PED) | PED_666/2022

TE07/2016

 

PED_666/2022 Project


English (Engleză)
Project title: Multi-sensor data fusion platform for integrated monitoring of ionizing radiation /MEMOIR
Periode: 30 Jun 2022 - 30 Jun 2024

Partners:
National Institute for Laser, Plasma and Radiation Physics - INFLPR (Coordinator)
Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering - IFIN-HH (Partner)

Contact Person:
Project Director: Dr. Andrei Stancalie (INFLPR)

Coordinator:
National Institute for Laser, Plasma and Radiation Physics - I.N.F.L.P.R.
Atomiștilor 409, Măgurele, Romania

Project Summary:
The “Multi-sensor data fusion platform for integrated monitoring of ionizing radiation” project ambitiously aims to design, develop, calibrate and test a novel integrated optical sensing model combining several technological platforms. It addresses a necessity in the given topic, namely radiation monitoring and distribution in real time, utilizing state-of-the-art custom optical sensing elements in such a way that a flexible platform will be left available for applications in HEP facilities, space born systems and technological transfer to partners world-wide. Given the current international context, recent projects undergoing at International Space Station, CERN but as well the newly developed High-Power PW Laser Facilities, the goal is to a)Design and develop a complex experimental model for remote radiation-distribution monitoring b) To demonstrate the implementation of such experimental model in two types of infrastructures: Co-60 semi-industrial irradiator providing homogenous continuous gamma-rays and ELI-NP high power laser facility providing mixed radiation. Powered by an intuitive user interface, the model targets security applications by approaching emergency procedures based on real time data collection. Validation includes correlation with IAEA standards for technological transfer, emergency simulation, and elaboration of safety procedures. The project will deliver qualitative scientific content for dissemination and high international visibility. By demonstrating the implementation of this powerful tool, it provides first step for technology transfer and possible European project collaboration for large scale facilities such as CERN, GSI/FAIR or DASY. The young team, part of the consortium represents two R&D Institutes and has thoroughly demonstrated the implementation of lower scale similar solutions (TRL3) aiming to reach technology readiness level (TRL) 4 leaving behind an instrument to be the base of future research collaborations and projects.

Objectives:
The project aims to design, develop and calibrate a flexible experimental model for ionizing radiation distribution monitoring in real time, with high sensitivity and spatial resolution. The model is than integrated into two different infrastructures to demonstrate its functionality: Industrial Co-60 gamma source (IFIN-HH) and to high power laser facilities such as Extreme Light Infrastructure -Nuclear Physics (ELI-NP) or CETAL-PW (INFLPR). The objectives follow: a) integrating multiple optical investigation techniques and correlating the response of different optical sensing platforms and systems and b) deploying and testing the developed data-fusion platform in real time, in different nuclear facilities in order to demonstrate its flexibility. Based on the real time remote data collection, the project aims to implement novel system emergency procedures in correlation with radiation protection standards.

Estimated results:
We aim in providing a viable solution necessary in a field of continuous development. A novel developed model for ionizing radiation monitoring will be left available for further use in other infrastructures than the ones mentioned within the project, such as HEP facilities or space born systems. By demonstrating the functionality of a hybrid optical system in ionizing radiation environments, the scientific results obtained will bring new insights in the field of novel sensors and optical fiber technologies and applications. These will lead to a better understanding of physical phenomena related to ionizing radiation distribution and interaction with materials, and structures within optical fibers. The novelty of the research and implementation will be strengthened by patent application and disseminated in high impact factor journals and international conferences with high visibility bringing, along the current international partners, new possible collaborations from academia to industry. Moreover, the teams experience in the field will be consolidated leading to European and National project applications.

Research Team:
•Dr. Andrei Stancalie (project manager) - INFLPR
•Dr. Laura Mihai - INFLPR
•Dr. Aurelian Marcu - INFLPR
•PhD. student. Mihalcea Razvan - INFLPR
•Dr. Daniel Negut - IFIN-HH
•PhD. student Petrisor Gabriel Bleotu - IFIN-HH
•Dr. Daniel Ursescu - IFIN-HH.


Phases and activities:

Project Phase I implementation (2022)

During the first stage of the project  (June 2022 - December 2022), "Designing an experimental model for ionizing radiation monitoring, based on different optical fiber platforms and investigation techniques the activities focused on: a) designing the architecture of the experimental model (selecting the types of optical components), and b) conducting spectral characterizations of these components.

Project Phase II implementation (2022)

During Stage II of the project (2023), “The development of an integrated sensor system characterized in the field of ionizing radiation with preset parameters and the implementation of a software platform for monitoring the optical response”, the tasks included: a) optical multiplexing of multiple types of structures manufactured in single-mode optical fibers b) Exposure to gamma radiation of fiber sensors manufactured in doped fibers, in collaboration with the University “Parthenope” Napoli, Italy, and the Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic. Tests were carried by using a research irradiator “gamma chamber GC-5000”; c) The exposure of the integrated sensing system to an industrial research irradiator with a panoramic Co-60 gamma source; d) Integrating the results in a software platform developed within the current project,  with a graphical user interface.

During the third and final stage of the current project, (Jan.2024-June2024), entitled “Validation of the proposed model by using the integrated multiple sensor system and software platform”, the activities included: a) Implementation and testing of the model in a mixed radiation field, obtained through the interaction of high-power lasers with various targets and b) Validation and optimizing of the MEMOIR model following the analysis of long-term results.

Results:

  • Method and setup for the optical characterization of FBG and LPG sensors in transmission and reflection.
  • Temperature calibration method for optical fiber sensors resulting in temperature coefficient databases
  • Databases containing spectral fingerprints and temperature-dependent variations of optical sensors.
  • Calculation routines for software implementation to automate and optimize data transmitted by optical sensors.
  • Development of algorithms for detecting resonant wavelengths of different optical fingerprints
  • Evaluation of the effect of gamma radiation on sensors manufactured in doped fibers.
  • Influence of dose rate on the sensitivity of an optical sensor.
  • Calibration of optical sensors in a gamma radiation field.
  • Development of algorithms for integrating the optical response of the sensing platform, correlating with radiation dose, and displaying a dose map in an intuitive interface



Română (Romanian)
Titlul proiectului: Platforma de senzori multipli pentru monitorizarea integrata a radiatiei ionizante / MEMOIR
Perioada: 30 Iun 2022 - 30 Iun 2024

Parteneri:
Institutul National pentru Fizica Laserilor, Plasmei si Radiatiei – INFLPR (Coordonator)
Institutul National de Cercetare-Dezvoltare pentru Fizica si Inginerie Nucleara - IFIN-HH (Partener)

Persoana de contact:
Director Proiect: Dr. Andrei Stancalie (INFLPR)

Coordonator:
Institutul Național pentru Fizica Laserilor, Plasmei și Radiației - I.N.F.L.P.R.
Atomiștilor 409, Măgurele, ROMÂNIA

Rezumat:
Proiectul “Platforma de senzori multipli pentru monitorizarea integrata a radiatiei ionizante” isi propune sa dezvolte, calibreze si sa testeze un model inovator bazat pe senzori optici ce combina mai multe platforme tehnologice. Proiectul abordeaza o necesitate in domeniu, si anume monitorizarea si distributia radiatiei ionizante, in timp real. Utilizand elemente optice dedicate, o platforma flexibila va ramane pentru a fi utilizata in facilitati nucleare, sisteme spatiale si pentru transfer tehnologic in intreaga lume. Avand in vedere contextul international, proiectele curente in desfasurare la Statia Internationala Spatiala, CERN dar si la noile facilitati dezvoltate de laseri de mare putere, scopul este de a: a) proiecta si dezvolta un model experimental complex pentru monitorizarea radiatiei de la distanta b) demonstra implementarea unui astfel de model experimental in doua tipuri de infrastructuri: o sursa gamma omogena de Co-60 a unui iradiator semi-industrial si facilitatea de laseri de mare putere ELI-NP unde se regasesc radiatii mixte. Sustinut de o interfata intuitiva, modelul vizeaza aplicatii de securitate abordand proceduri de urgenta bazate pe date colectate in timp real. Validarea include corelarea cu standardele IAEA pentru transfer tehnologic, simulari de situatii de urgenta si elaborarea de proceduri de siguranta. Proiectul va livra continut stiintific ridicat pentru diseminare si vizibilitate internationala. Prin demonstrarea implementarii acestui instrument vom realiza primul pas catre transfer de tehnologie precum si pentru viitoare posibile proiecte Europeene in colaborare cu infrastructurile de anvergura precum CERN, GSI/FAIR sau DASY. Consortiul, format dintr-o echipa tanara, reprezinta doua institute de cercetare-dezvoltare si a demonstrat riguros, implementarea unor solutii similare la scara mai mica (TRL3) vizand atingerea pragului tehnologic TRL4 si lasand la dispozitie un instrument pentru viitoare colaborari si proiecte de cercetare.

Obiective:
Proiectul isi propune sa proiecteze, dezvolte si sa calibreze un model experimental flexibil pentru monitorizarea distributiei radiatiei ionizante in timp real, cu sensibilitate si rezolutie spatiala ridicate. Modelul este apoi integrat in doua infrastructuri diferite pentru a demonstra functionalitatea: O sursa gamma Co-60 industriala (IFIN-HH) si in facilitati de laseri de mare putere precum Extreme Light Infrastructure - Nuclear Physics (ELI-NP) sau CETAL-PW (INFLPR). Obiectivele proiectului urmaresc: a)integrarea a mai multor tehnici optice de investigare si corelarea raspunsului diferitelor platforme de senzori optici si b) implementarea si testarea platformei de senzori multipli in facilitati nucleare diferite in vederea demonstrarii flexibilitatii acesteia. In baza colectarii de date la distanta, in timp real, proiectul isi propune sa implementeze noi proceduri de siguranta in corelare cu standardele de protectie la radiatie.

Rezultate estimate:
Ne propunem sa furnizam o solutie viabila si necesara intr-un domeniu in continua dezvoltare. Un nou model pentru monitorizarea radiatiei ionizante va ramane disponibil pentru viitoarea sa utilizare in alte infrastructuri decat cele mentionate in proiect, precum facilitati HEP sau sisteme spatiale. Demonstrand functionalitatea unui sistem optic hibrid in medii cu radiatii ionizante, rezultatele stiintifice obtinute vor aduce noi informatii in domeniul senzorilor, tehnologiilor pe fibra optica si aplicatiilor acestora. Aceste rezultate vor ajuta la o mai buna intelegere a unor fenomene fizice asociate distributiei radiatiei ionizante si interactiei cu diverse materiale si structuri fabricate in fibre optice. Noutatea acestei cercetari si implementarea modelului va fi demonstrata prin patentare si diseminare in jurnale stiintifice cu impact precum si in cadrul conferintelor internationale cu vizibilitate ridicata, aducand pe langa actualii parteneri internationali, noi posibile colaborari de la cercetare la industrie. Mai mult, experienta echipei proiectului va fi consolidata, conducand catre aplicarea unoi noi proiecte europene si nationale.

Echipa de cercetare:
•Dr. Andrei Stancalie (director de proiect) - INFLPR
•Dr. Laura Mihai - INFLPR
•Dr. Aurelian Marcu - INFLPR
•PhD. student. Mihalcea Razvan - INFLPR
•Dr. Daniel Negut - IFIN-HH
•PhD. student Petrisor Gabriel Bleotu - IFIN-HH
•Dr. Daniel Ursescu - IFIN-HH.

Etape si activitati:

In cadrul primei etape (iunie 2022 – decembrie 2022), “Proiectarea unui model experimental pentru monitorizarea radiatiei folosind platforme variate de fibre optice si tehnici de investigare a acestora” s-au realizat: a) proiectarea arhitecturii modelului experimental (selectarea tipurilor componentelor optice) si b) realizarea caracterizarilor spectrale ale acestor componente.

In etapa a doua a proiectului (2023), “Dezvoltarea unui sistem de senzori integrati, caracterizat in camp de radiatii ionizante cu parametrii prestabiliti si implementarea unei platforme software de monitorizare a raspunsului optic”, activitatile au cuprins : a) integrari prin multiplexare optica a mai multor tipuri de structuri fabricate in fibre optice unimodale, b) expunerea la radiatii a unor senzori dopati fabricati in colaborare cu Universitatea Parthenope, Italia respectiv cu Institutul de Fotonica si Electronica, Academia de Stiinte din Cehia, la o sursa gamma Co-60 tip „gamma chamber GC-5000; c) expunerea sistemului de senzori integrat la un iradiator industrial de cercetare cu sursa gamma panoramica; d) integrarea rezultatelor intr-o platforma software cu interfata grafica.

In cadrul etapei finale a proiectului (ianuarie 2024-iunie 2024), “Validarea modelului propus utilizand sistemul de senzori multipli integrat si platforma software”, activitatile au cuprins: a) Implementarea si testarea modelului in camp mixt de radiatii, obtinut prin interactia laserilor de mare putere cu diverse tinte si b) Validarea modelului MEMOIR si realizarea de optimizari in urma analizei rezultatelor pe termen lung.




Rezultate obtinute

  • Metoda si montaj pentru caracterizarea optica a senzorilor FBG si LPG in transmisie si reflexie.
  • Metoda de etalonare cu temperatura a senzorilor pe fibra optica in vederea obtinerii coeficientilor de variatie spectrala in lungime de unda.
  • Baze de date cu amprentele spectrale si variatia cu temperatura a senzorilor optici.
  • Rutine de calcul pentru implementarea software in vederea automatizarii si optimizarii datelor transmise de senzorii optici.
  • Dezvoltarea de algoritmi de detectie ale minimului sau maximelor unor forme spectrale.
  • Efectul radiatiei gamma asupra senzorilor fabricati in fibre dopate
  • Influenta debitului de doza asupra sensibilitatii unui senzor optic. 
  • Calibrarea senzorilor optici in camp de radiatie gamma;
  • Realizarea de algoritmi pentru integrarea raspunsului optic a unei platforme de senzori, corelarea cu doza de radiatii si afisarea unei harti de doza intr-o interfata intuitiva

Rezumat public:

PLATFORMA DE SENZORI MULTIPLI PENTRU MONITORIZAREA INTEGRATA A RADIATIEI IONIZANTE (MEMOIR)

(PN-III-P2-2.1-PED-2021-1668)

Avand in vedere contextul international, proiectele curente in desfasurare in cadrul infrastructurilor mari precum CERN dar si aplicatiile bazate pe estimarea valorilor de doza in domeniul spatial, inclusiv pe Statia Internationala Spatiala (ISS), fibrele optice isi gasesc un rol din ce in ce mai important datorita proprietatilor unice de a transmite si cuantifica diversi parametri precum temperatura, umiditate sau tensiuni mecanice in timp real de la distanta, din medii cu risc radiologic. In mod deosebit, prin optimizarea materialelor componente ale unei fibre optice si prin fabricarea de nano-structuri in interiorul miezului sau invelisului, senzorii pe fibra optica au dovedit un potential major pentru aplicatiile in medii cu radiatii ionizante. In proiectul curent, o platforma de senzori pe fibra optica a fost dezvoltata si implementata in facilitati nucleare pentru a transmite informatii despre dozele de radiatie ionizanta, in mod localizat si in timp real. Cu ajutorul unui software dedicat, dezvoltat special in cadrul acestui proiect, platforma de senzori multipli a fost optimizata pentru a putea oferi informatii critice din zone expuse la radiatii. Senzorii componenti, transmit valori despre doza acumulata, debite de doza si chiar integreaza o monitorizare a radiatiei intr-un volum de pana la 1 metru cub, abordare ce pana in momentul de fata nu s-a reagasit in literatura de specialitate. Prin optimizarea unui astfel de sistem, un operator ce nu trebuie sa aiba cunostinte extensive despre domeniul fotonicii sau al radiatiilor ionizante, poate beneficia de o interfata intuitiva unde poate seta parametri senzorilor parte din sistem si poate monitoriza in timp real zona de radiatii din facilitatile unde platforma de senzori este implementata. Mai mult, implementarea proiectului a permis includerea corelarea valorilor caracteristice ale senzorilor, cu valori de doza ce se incadreaza in anumite regimuri de securitate radiologica conform standardelor internationale. Aceste valori au fost implementate in platforma software ce poate fi utilizata si ca un sistem de alerta in cazul unor evenimente cu risc radiologic, operatorul putand fi anuntat in cazul depasirii anumitor praguri si cunoscand exact locatia unde aceste avarii au avut loc. Proiectul a adus rezultate importante in ce priveste dezvoltarea de senzori ultra-sensibili in camp de radiatii, influenta debitelor de doza asupra materialelor dopante precum si statistici privind utilizarea fibrelor pe termen lung, respectiv la ce perioada dupa expunere, un senzor isi recapata partial proprietatile initiale. Tot pentru prima data, in cadrul proiectului MEMOIR, senzori cu fibra optica au fost testati in experimente de laseri de energii inalte, ce prin interactia cu materia produc radiatii ionizante variate. Toate aceste studii reprezinta noutati absolute in domeniul stiintific abordat.


ped666

Publications:

I. ISI Papers

[1]. A. Leal-Junior, A. Theodosiou, A. Frizera, A.J. Fernandes, A. Stancalie, A. Ioannou, R. Mihalcea, D. Negut, D. Ighigeanu, K. Kalli, C. Marques, Influence of gamma and electron radiation on perfluorinated optical fiber material composition, Materials Letters 340, 134205 (2023)

[2].  F Esposito, A Stancalie, A Srivastava, M Śmietana, R Mihalcea, CD Neguț, S Campopiano, A Iadicicco, The Impact of Gamma Irradiation on Optical Fibers Identified Using Long Period Gratings, Journal of Lightwave Technology 41 (13) 4389–4396 (2023)

[3]. Razvan MIHALCEA , Daniel IGHIGEANU , Daniel NEGUT , Andrei STANCALIE, COMPARATIVE EVALUATION OF ELECTRON AND GAMMA INDUCED EFFECTS ON FBG FABRICATED IN STANDARD AND RADIATION HARDENED OPTICAL FIBERS BY DIFFERENT TECHNIQUES, U.P.B. Sci. Bull, Series A 85 (3), (2023)

[4]. Y. Luo, B. Yan, A. Stancălie, D. Ighigeanu, D. Neguţ, D. Sporea, S. Wei, X. Fu, J. Wen, T. Wang, X. Sun, G.D. Peng, Experimental study on activating bismuth active centers in bismuth/erbium codoped optical fiber by ionizing radiations,Optical Materials,Volume 152, 115456, (2024)

[5]. Flavio Esposito, Dariusz Burnat, Razvan Mihalcea, Daniel Negut, Anubhav Srivastava, Stefania Campopiano, Lucia Sansone, Michele Giordano, Andrei Stancalie, Agostino Iadicicco, Mateusz Smietana, “Optical properties of thin films monitored in real-time at high gamma radiation doses using long period fiber gratings, Optics&Laser Technology, 176,111019, (2024)

[6]. A. Stancalie, I.R. Andrei, M. Boni, A. Staicu, M.L. Pascu, "Droplet temperature measurement using a fiber Bragg grating", Applied Thermal Engineering, 123905 (2024)

II. National Patent (submitted for evaluation)

[1]. “Multi-sensor data fusion platform for integrated monitoring of ionizing radiation”, R.Mihalcea, A.Stancalie, L.Mihai, P.Bleotu,D.Negut.

III. Proceedings Papers

[1]. Theodosiou, L. Koutsokeras, A. Ioannou, A. Stancalie, C. D. Negut, J. Aubrecht, P. Peterka, G. Constantinides, and K. Kalli "Post-radiation effects of core pumped monolithic holmium-doped silica fibre lasers", Proc. SPIE 12573, Specialty Optical Fibres, 125730U (2023);

[2]. Flavio Esposito, Andrei Stancalie, Anubhav Srivastava, Mateusz Smietana, Jan Mrazek, Razvan Mihalcea, Constantin Daniel Negut, Stefania Campopiano, and Agostino Iadicicco , Response of long period gratings written in B/Ge and P-doped optical fibers to gamma radiation, Proc. SPIE 126430A (12643) 126430A (2023)

IV. Conferences

[1]. F. Esposito, A.Stancalie et al. “Response of long period gratings written in B/Ge and P-doped optical fibers to gamma radiation”, European Workshop on Optical Fiber sensors (EWOFS), 23-26 May 2023, Mons, Belgium

[2] Theodosiou, L. Koutsokeras, A. Ioannou, A. Stancalie, C. D. Negut, J. Aubrecht, P. Peterka, G. Constantinides, and K. Kalli "Post-radiation effects of core pumped monolithic holmium-doped silica fibre lasers”, SPIE Optics + Optoelectronics 2023, 24-27 April 2023, Prague, Czech Republic

[3] F. Esposito, A. Stancalie, A. Srivastava, M. Śmietana, R. Mihalcea, C.D. Neguț, S. Campopiano, A. Iadicicco, “Gamma irradiation and recovery effects on optical fibers investigated by Long Period Grating”, 53rd Annual Meeting of the Associazione Società Italiana di Elettronica (SIE), 7-9 September 2022, Calabria, Italy.

[4] Optical fiber gratings optimized for ionizing radiation sensing and security applications , Andrei STANCALIE, Razvan MIHALCEA, Daniel IGHIGEANU, Daniel NEGUT, Mihai STRATICIUC, Agostino IADICCICO, Flavio ESPOSITO, Mateusz SMIETANA, Jan MRAZEK, 2nd International Conference on Laser, Plasma and Radiation Science and Technology, 16-21 of June, 2024, Danube Delta, Romania.

[5] Comparative analysis of the influences of electron and gamma radiation on FBG sensors created in conventional and radiation hardened optical fibers using a variety of approaches, Razvan MIHALCEA, Andrei STANCALIE, Daniel IGHIGEANU, Daniel NEGUT, 2nd International Conference on Laser, Plasma and Radiation Science and Technology, 16-21 of June, 2024, Danube Delta, Romania.